【コンデンサーのつなぎかえ】高校物理 電磁気 コンデンサーのつなぎかえ①電気量をおく 入試編

Поделиться
HTML-код
  • Опубликовано: 21 ноя 2024

Комментарии • 43

  • @あわ-w6m
    @あわ-w6m 4 года назад +15

    視覚的に学べるRUclipsは学生の宝庫です。とてもわかりやすいです。ありがとうございます。

  • @ph1493
    @ph1493 Год назад +19

    助かりましたぜ!!テスト3時間前!

  • @TT-bc5nr
    @TT-bc5nr 3 года назад +8

    喋り方めっちゃすき。
    肩もみたい。

    • @tanoshi-butsuri
      @tanoshi-butsuri  3 года назад +1

      ありがとうございます!
      いつも肩こり・・・

  • @ほくく-d4f
    @ほくく-d4f 2 года назад +8

    一回やり方を理解したらあとはもうほんとに演習あるのみですね

  • @匙加減-q4h
    @匙加減-q4h 4 года назад +14

    めちゃ分かりやすい、、正直漆原の参考書電磁気だけ分かりにくかったので助かります。。

    • @tanoshi-butsuri
      @tanoshi-butsuri  4 года назад

      ありがとうございます😊
      頑張ってください‼️

  • @金色茶色と
    @金色茶色と 2 года назад +5

    分かりやすすぎたおかげで一昨日ぶりにやってみたけど完璧に再現できた!

  • @jr6rmq
    @jr6rmq 10 месяцев назад

    ▶第3の解き方
    S1閉じ定常状態後、S1開き、
    S2閉じ定常状態後、S2開き、
    S1閉じ定常状態後のQ1,Q2を求めると
    (S1閉じる直前、C1,C2の電圧20V,4Vなので30Vとの電位差は)
    30-20-4=6[V]
    この6VによりC1,C2に新たに充電される電荷をQ’とすると(電荷の公式Q=CV、分圧の法則より)
    Q’=C1×{6×C2/(C1+C2)}=1×6×2/(1+2)=4[μC]
    又は
    Q’=C2×{6×C1/(C1+C2)}=2×6×1/(1+2)=4[μC]
    (この時、C1,C2は直列だから、この電荷量Q’=4μCが新たに追加されるので)
    ∴Q1=20+4=24[μC]
    ∴Q2=8+4=12[μC]

    9:27〜の右図のC1,C2に蓄えられた電荷量
    C1が24μC
    C2が12μC
    と同じになります。
    こんな方法もありますよ、(^o^)ノ
    ▶ps.
    何故だか知りませんが、この解法による解説は、他では(なかなか)見かけません。 どうして見かけないんだろーと不思議に思います。 解法としては素直な考え方だと思うのですが…

  • @いむ-j8h
    @いむ-j8h Год назад +1

    6:04のとこで1Fのとこも孤立部分としてとらえて
    −20+20+0(s2閉じる前)=−20+Q2+Q3(s2閉じた後)っていう式でやって合ってたんですけどこれってたまたまですか?

    • @jr6rmq
      @jr6rmq 10 месяцев назад

      孤立部分における電荷量保存の法則より、その式が成立します。

  • @るどだっぐどな
    @るどだっぐどな Год назад +2

    4:53 それぞれのコンデンサーの電圧って電気容量の逆比になるんですか?たまたまですか?

    • @tanoshi-butsuri
      @tanoshi-butsuri  Год назад

      単純な直列接続の場合はそうなりますね。

  • @りんご-l1q
    @りんご-l1q 2 года назад +2

    電位の式(キルヒホッフⅡ)の考え方ではなく、直列or並列で考えても大丈夫ですか?

    • @tanoshi-butsuri
      @tanoshi-butsuri  2 года назад +1

      試してみてください。たぶん、うまくいかないと思います。

    • @りんご-l1q
      @りんご-l1q 2 года назад +2

      @@tanoshi-butsuri
      無理でした…
      返信ありがとうございます😭

    • @tanoshi-butsuri
      @tanoshi-butsuri  2 года назад +3

      そうなんですよ。私の動画でも、よく触れてますが、コンデンサーの問いは複雑になってくると、直列並列の式で解けることはほぼ無くなってきます。
      なので、この動画で説明した考え方を理解しておくことが重要になりますね。

  • @chisi8832
    @chisi8832 3 года назад +1

    すげえわかりやすい、!!!

  • @あたま-c5g
    @あたま-c5g 4 года назад +1

    めっちゃわかりやすいです!

  • @user-xv7fk6cx8g
    @user-xv7fk6cx8g 4 месяца назад

    回路が成立しなくなったら電気量はそのままと考えて良いですか?

  • @伊藤太吾-v3s
    @伊藤太吾-v3s 3 года назад +2

    接地って何の役割がありますか?

    • @SP_komopehido
      @SP_komopehido Год назад

      電位の基準点です。接地(アース)が含まれる問題はその点の電位を0Vとして考えます。

  • @Princepscivitatis
    @Princepscivitatis 3 года назад +1

    すみません。
    式の立て方は分かりましたが、式の解き方が分かりません。
    なぜQ1=Q2=20に、またQ2=8, Q3=12になるのでしょうか。
    教えてください。

    • @tanoshi-butsuri
      @tanoshi-butsuri  3 года назад +1

      Q1とQ2の連立方程式です。
      Q1をx Q2をyと書き直してみると、数学のように解けるかもしれません。

    • @Princepscivitatis
      @Princepscivitatis 3 года назад +1

      @@tanoshi-butsuri 簡単に解くことができました。
      いつも分かりやすく解説して頂き、ありがとうございます。

  • @jloc6tmk
    @jloc6tmk 2 года назад +1

    先生、いつもお世話になっております、ありがとうございます。
    質問させてください:7:42の(2)のつなぎ変えを行った後の電圧についての質問です。ゼロVから4V上がり、20V上がって24Vになるのはわかりました。残りの6v(=30-24)はどこに行ってしまったのでしょうか?電圧は合計すると30Vになるという考えはおかしいでしょうか?何かもやもやしておりますw。どのように考えれば良いか、教えていただければありがたいです。

    • @tanoshi-butsuri
      @tanoshi-butsuri  2 года назад +1

      上のスイッチを開いているので、30vのところと24vのところは同じ電位にならないですね。

    • @tanoshi-butsuri
      @tanoshi-butsuri  2 года назад +1

      合計30vというか、キルヒホッフの第二法則が成立するのは閉じた回路つまり一周つながっている回路の話です。

    • @jloc6tmk
      @jloc6tmk 2 года назад +2

      閉じていない.....ああ、そうですね、気が付きませんでした。納得できました! 先生、どうもありがとうございます。

  • @豪毅四之宮
    @豪毅四之宮 3 месяца назад

    ふと思ったのですが6:25のところで、電気は流れるのですか?

  • @団子三色-y8w
    @団子三色-y8w 3 года назад +3

    6:04 のところ、孤立部分に上の1Fのところは入らないのでしょうか、、
    バカみたいな質問ですいません。

    • @ゆめぴりか-h1s
      @ゆめぴりか-h1s 3 года назад

      両方から同じやつを引いてるから考えなくていいんじゃないでしょうか?

  • @だだだば
    @だだだば 2 года назад

    この問題の極板面積S、上下右から極板間の距離d.2d.3dと与えられている問題で、直列側の2つの合成容量×起電力で下のコンデンサーに蓄えられる電荷が出せるのですか?
    僕はてっきり下のコンデンサーのみの電気容量を出して、その電気容量×起電力で出せるのかと思っていたら間違ってました

    • @だだだば
      @だだだば 2 года назад

      言語化すると分かりにくてすいません

    • @tanoshi-butsuri
      @tanoshi-butsuri  2 года назад

      ごめんなさい。質問がよく分からないです。。。

  • @もちやん-c4m
    @もちやん-c4m 4 года назад +3

    +Q1と−Q1ではさまれた極版間では電位差が生じるけど、−Q1と+Q2は符号違うけど同じ導線を共有してるから電位差0なのか、なんでだろ電磁気ごっちゃになるわ

    • @tanoshi-butsuri
      @tanoshi-butsuri  4 года назад +2

      電位差は位置エネルギーの差なんですね。
      力学に例えるとよく、電位が高さ、電荷が水、に例えられます。
      水の高さの差があるタンクが水道管(導線)で繋がってると水が流れで同じ高さになりますよね。
      そんなイメージで、電荷の移動が自由にできる範囲は、電位差があると電位差がなくなるまで電荷が移動します。
      でも、コンデンサーの極板間は絶縁体なので、電荷が移動することができず、電位差が生じた状態になるんですね。

    • @もちやん-c4m
      @もちやん-c4m 4 года назад

      @@tanoshi-butsuri ありがとうございます😭基本的なこと質問して申し訳ないですw気になったので
      いつも分かりやすいです!

    • @tanoshi-butsuri
      @tanoshi-butsuri  4 года назад +2

      いやいや,いい質問ですよ!
      自由電子が移動できる範囲は同じ電位になるまで電荷の移動ができるんですね。ただし,電池の中は自由電子が移動できるのですが,5Vの電池なら5Vの電位差を保つ作用があります。
      よく,電池を水の高さを上げるポンプのように例えられます。
      ただ,この水の例えもあまり万能ではないので,イメージ程度にしておいてください。

  • @いつき-h8i
    @いつき-h8i 2 года назад +1

    コンデンサーめんどい